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A3STRACT

2 model for the interface of two media with different background
densities , separated by a charged bilaver, is solved exactly
in a two dimensional, one component plasma at reduced temperature 2.

when the two media are in direct contact (no 3ap), then we can think
of it as a model of a classical metal and an electrolytic solution
or just two metals. The contact potential, or notential of zero charae
apoears to be a very simple function of the ratio of the background densities
we also find that the opotential does not depend on the surface charge,a

fact that we exvlain using a corollary of the verfect screening theorem,

A second case of interest is tha case of the two media sevarated by
a gap that in our case could be charged :this is a model of a two dinensional
membrane,or the pclarization laver of the inner Helmholtz region.
Very surprisingly,we find that also the surface dipole is completely
screened by the charges surrounding the interface,so that the
pctential drop across the interface only depends on the logarithm
of the charge densities, as found by 3allone,Senatore and losi

for the most simple case of a discharged contact.
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I-INTRODUCTION
Cne of the most interestina exact results in the theory of charged
interfaces in recent times is the solution of the one component plasma (OCP)
in two dimensions by Jancovici (1,2). Although this model is exactly
solvable only at reduced temperature 2,which in a three dimensional world
corresponds to a little too concentrated ionic solution (for biological

systems) ,it may be solved for a rather wide variety of inhomogeneous systems

One of these is the interface between two media of different background ,l

density, separated by a charged gap. This case could be a model for

~ the classical metal-metal junction, the semiconductor junction

the metal electrolyte interface among others.

In Biology there is also a system which corresponds to this model:
The Donnan equilibrium is established between two media containing
different concentra.ions of »nroteins, and which are sesarated »y
a membrane that allows passage of the small ions only (3).A system of
particular interest is the nerve membrane(4,5).The mechanism of oroduction
of the so called action potential is strongly related to the charge
distribution across the interfaces.B82cause of the small size of the systen
and the low conductivity,direct electrochemical measurements are difficult
dnly recently exneriments involving interacting doudle lavers in a systenm
similar to a Connan system have been revorted (o).iere two immiscinle
electrolytes are studied electrocnemically.lowever these =2xveriments
involve rather comolex orzanic nolecules, and it is very nard
tc conztruct a microsconically correct tnhneory f£or the charae ana
and »otential orcfiles,and tne differential casacitances.ve 3n0uld
mention in tais context the recent wcrx 2f Levine and Cutnwaite (7),

Jicnclls 2né Sratt (o) and 3llastuey and Levesaue (9).




The nurvose of this work is to nresent a simole model for these

systems based on the two dimensional OCP.Forrester and 3mitna(l0)

have solved the case of a plasma contained between two fixed walls,and Saith

soclved the case of a flat ideal electrode with image forces (ll)

Qur method of solution is based on the methcd of Jancovici (1,2) ,but
follows the ocultline of these last twc references.

It is our hope that this exact solution will serve as a benchmark

to evaluate the accuracy of different aocroximate theories,anil to cneck

the validity of exact theorems such as the derfect screening suam rules.

In section 2 we give a description of the model and a brief outline
of the method of solution.The reader interested in the technical details
of the sclution should consult references (1,2,1y,l1). In section 3
we discuss the case in w~hich tne width of the gao is zero. In
secticn 4 we present calculations for the case in which the
memorane, or gap, is of finite width.we remark that this case

also renresents the inner Helmholtz layer with a fixed dipole.
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II-4ETHOD OF SOLUTION

The system consists of an empty strip of width Q,that separates

the two plasmas . The neutralizing background in each side is of density

—-eq /ﬂl and ~eoc /{1 ,where e is the elementary charge, and
1

2

the borders of the strip have charge densities -eo /TT and-ec /TT
1 2

The plasma coupling parameter is

r\=p ei/é =2

where P =1/kT is the Boltzmann thermal factor,T being the absolute
temperature. The value I"=2 may be svecial in the sense that
the nair correlations of the bulk have gaussian rather than exponential
screening.0Otherwise this parameter is not unphysical,and ,in fact
it corresvoonds to the order of magnitude of a 14 electrolytic
solution at rocm temverature.

Following Jancovici (1,2) we consider initially our system to be
confined tc a disk of radius R. In this disk there is a riny of innrer

radius F and outer radius R . The uniform packground density of

1 2
the inner reqgicn is -ecz/TT,and that of the outer reqgicon is-eCE/TT
1
Clearly
R =R +P2 (2.1)
2 1

where £ is the width of the rint which eventuallv will becoae our
Terorane,.In cur model this memebrane will be just 2 7ap. Mhe 7ovile izns s

crarle e 3r2 Ire2 to te anvwhere.




The total number of icns N must satisfy the electroneutrality relation

2 2 2
N=2(0C R +0 R )+R @ +(R -R ) = (2.2)
11 22 11 1 2 2

The hamiltonian of this model is

N

2 2

N
9= (l/2)e { - Zlnlt -r 2_.[20’R ln(r /R ) 8S(r =R )
k>3 k=1 k 1 k 1

2 2 2
26 P ln(r /R ) ©@(r =R ) + o¢c(r =R ) &(R -r )
22 k 2 k 2 1 k 1 1 k

2 2
+ o€R 1ln(r /JR') &(r =R )
11 k 1 k 1

2 2 2 2
+oL (r =R )= R 1ln (r /R ) ®O(r =R )]} + 3 (2.3)
2 k 2 2 2 k 2 k 2 N

where r is the vosition of ion k, ¢f charge e,and €(x) is the Heaviside
k

function of x.B is a background term that is irrelevant to cur p»resent
M

calculation.The octentials have been shifted to insure continuity
across the »lates.

Ne cornute the cancnical vartition function

N H
Z =(l/b!!)fdr e_P (c.4)
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2 9
+ (/R ] J dr r
1 R
1
2 2
2(n =-n) 2(n =-n ) R 2n +1 - (r =R )
g 2 g 2 2 2
¥ [1/R J1{1/ R ] dr r e
1 2 R
2
(2.5)
where
2
n=n-20R - xR (2.6)
g 11 11
2 2
n =n =20 R =-20R +( ®R - R ) (2.7)
2 11 2 2 2 2 11
and p=(l/k'1‘) is the Boltzmann factor.
Introducing the incomplete gamma function
b a-1 -t
¥(a,b)= J dt t e (2.3)
J
we get
\ —pB N-1
‘ N N ‘, l 2 2 n+l
[ Z =e ¢ T { ¥(n +1; xR ) exo[xR ]/
i N n=0 11 11 1




2(n =n) 2(n +1) 2(n +1)
g g
| + [1/ R ] [(1/2(n +1)]1 (R 1 +
E 1l g 2 1
2(n =-n) 2(n =n ) 2
2 g 2 2
¥ (/R 11/ R 1 { ¥(n +1;¢R ) -¥(n +1; xR )] |
1l 2 2 _ 2 22
n+1
2 2
exp[eR ] (l/cx ) } (2.9)
2 2 2
The single particle density is
N-1 2 2 2n
f(r)= (/D ) { exp[-ax(r -R )](r/R) B( R =-r ) +
2 ; n 1 1l 1l 1

n=0

2n

3
[(8( r =R ) -&( r -R ) ] +

(/R )
1 1 2

2n 2n
2 g 2 2
+ (r/R ) (R /R )
2 2 1 2 2

with
2 2n 2
D =exp (R ) (1/R) ¥(n +l;x R )+
n 1 1 1

2 ns&‘!— q
+ (v /(2n +2) [ (R /R) =11
1

1 q s 1

exo{-o<(r -R )]{e( r -] )] }

2
(2.19)




2n 2(n -n )

g 2 g 2 2
4+ (1/R ) (1/ R ) [ ¥(n +1;Ra) ~¥(n +1;R &))
1 2 2 X 2 22
n +1
2 2
exp[x R ] /x
2 2 2

(2.11)

Similarly, the pair density distribution function is

m m m m 2(m +m )
2 1,22 1 /&2 1 2
(r ,r )= p(r )o(r )- r (rh r r [1/R ]
P 1 2 P 1P 2 m 1 2 (3

1 2

{ G(r ) 3(c)}/{D D }
1 2 m m
1 2

(2.12)

where D is defined in (2.11) and s(r) is given by
™

2 2
S(r)= exp[-ot(r =R )] ( R -r )
1 1 1
2
qu
+(r/R ) {{3(r=-R )=@(r-R )]
L 1 2
2 2
A, 8, 2 2
+ (R /) (r/R ) exn{-oe(r =R )| 3(R -r)
2 1 2 2 2 2




In the limit

R,R ,R -> 00
1 2

R -R =€, (2.14)
2 1

and using

Yin +2;m=(\2TT n/2) exo(-men 1n n) (1 + d(v=n)/]2n |

with
X 2
-t
Yo =T 1| ac e (2.15)
0
we get
Q0 2
f(x)= (2/1 J dt (1/D ) {exp(=-2ax -2xty2 ) O(-x) +
-a0 t 1

Cexo(=2x{Z(t+ 2 )1 [ @(x)-0(x-@ 1|
1

+exo(-2cx (x-8) -2(x-€)NZ(t+\20 g )-20(29 L)] 3(x-8)] )
2 102 1
{eelo)

_ . _ -




with

2
D =exp(t /o) [ 1 +§(t AfT)l/{ar
t 1 1 1l

- [exp{-zfmuvwl)}-ll/tﬁ(u o))
1

2
+ exp{-20T(t+VI0 ) +[t+\T(o +& )] /o) [l-i{tﬂT(d v ) /& NN
1l 2 1 2 2 2

1 2
(2.17)
and for the pair density
2 2
f(z , 2 )=P(x )p(x )-exp[-2acx -2 x |
1 2 1 2 i j
3 00 2
4/TT | f dt exp[- 2t(x +x + ~iy)] /D |
~-00 1 2 t
(2.10)

where z=x+ iy,a result due to Jancovici (private

communication,1l2).




III THE B3ACKGROUND JUMP MODEL
A very interesting particular case of (2.16) arises when the

width of the interface layer e is zero. In that case the charge

density is

oo 2
j)(x)= (Z/W) J dt (1/D ) {exp(-2ccx -2xtV7 ) x<0
t 1

- Q0

ao 2
o(x)= (Z/W)J dt (1/D ) exp(-2ccx -2x{2(t+yZo ] x>0
t 2

-QD
(3.1)
i IE
D =exp(t / ) [ 1+ p(t/yx))/Hx
t 1l § 1 J—l
2
rexpl(t+80) / o) [ 1 - §(e/f&IINE
2 2 2
(3.2)

This equation for the case 0=0 has been independently obtained
by Jancovici ( to be published ,12}.
Figures 2 shows the mobile charge vrofile for various ratios of

_the backcround densities & /X .The value 16 is scaled to represent
2 1

the difference in density between a 1 molar electrolvtic solution
and a simple metal: If we take this number to be 54, then to go

from three dimensions to two dimension, we simply take the (2/3) oower




which is l6.Clearly, most metals are far from being classical

one comoonent plasmas (Drude Theory) ,although semiclassical treatments
are widely used to explain transoort properties (1l4) ,which,as we

know, are strongly dependent on correlations.Unfortunately the quantum
mechanics of fully correlated systems is very difficult,more so in

the vicinity of a surface.For this reason we believe that an exactly
solvable model of a fully classical metal interface is useful because

it illustrates the subtleties of the behaviour of correlations in
charged systems.Figure 3 shows the total charge distribution near

the interface as a function of the background ratio.Although it is clear
that the penetration depth on the metal side is smaller for the

‘metal” side ( side 2),the charge densisty is also much larger

Figure 4 and 5 show the rather strong dependence of the charge
profile on the surface density 6 . In Figures 6 and 7 we have
compared the charge profiles for different &, but keeping ¢ constant.
Again, we see the rather dramatic dependence of the charge profile on the
sur face charge. Fiqure ¥ shows the dependence of the contact potential
on the surface charge O ,compared to the ideal electrode case.

To investigate further this point consider Poisson’s

eguation (15).

'V?f(x)=-2[€(x)-o§%)]f-26g1x) {3.3)

wnere o(x)=0¢ for x<u and «(x)=c for =x>U.
1 2

2y elementary inteqration

X
Ef(x)=-2dlxl+25 dix (X -x)[f(x )=c(x )] W (3.4)
-0 1 1
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Using (3.1), we get after some straightforward calculation
D= p(oo) -(p(-o00) =-(1/4) ln(ac /oc) (3.5)
§= fproor -G a1

This extremely simple formula for the contact potential of two
metals (or, correspondigly, to the potential of zero charge for the
case of the metal electrolyte interface), is not really unexpected
when the charge o=0:Actuaily this result was obtained on the basis of a

2
f.=F;/kTN=-(1/4)(e /kT) 1ln +F (T) (3.6)
i i i o
where i is the index for the side of the interface (i=1l,2}.
The reversible work to transfer one mobile charge from side to the other

is clearly

2
Af=(-1/4) (e /kT) ln(x /o) (3.7)
2 1
But the reversible work is only electrostatic, so that
2 2
Af=(e /k-r)Acg = (~-1/4) (e /kT) 1ln(o¢ /oe) (3.3)
2 1

where we must remember that because cf our special choice of units
the electrostatic potential is measured in units of 2k%@>

This result is contained in the work of 3allone, 3enatore and Tosi
(ls) who showed for the neutral interface that the potential drop

across the interface devends only on the difference of the chemical

opctential in the bulk phases.




The surprise is that the surface charge has no effect whatsoever

cn the potential drop across the surface.Clearly this must be
due to the fact that because of the perfect screening theorems (15,19,20)
the charge distribution has no multipole moment.Indeed the theorems
have been proven for finite size disks ( for R finite ),and 1in that
case <x>=0,which implies no potential drop due to charge & .we
conjecture that this relation remains valid in the limit or R->00 .

Just as an interesting aside, if we scale the relation (3.8)
to three dimensions, then, since

(2/3)
P =n (3.9)

A= (-1/6) 1ln(n /n ) + F(T) (3.10)
2 1

where n ,n are the bulk electron densities of the metals,and F(T) is
1 2

is a function of the temperature alone.

Ll




IV THE GAP MODEL

The eguation (2.16) offers a rich variety of possibilities that
we shall not explore at this time.We have plotted the charge density
densities for two different cases in €figures 9

and (10) (total charge density).1ore complicated porofiles are obtained

when the interface is charged and/or polarized. However, the more
interesting quantity is the electrostatic potential,which is obtained
by integrating Poisson’s equation (3.3). The results for the charged gap

where o = = and the background @ =4 are shown in Figures 11 and 12
1 2 2

again here we observe that the effect of the charges is screened out
completely, and the potential droo is given by (3.5). 4e finally
computed the case in which the interface had a oermanent dipole

by setting o’=-¢o’=2. Fiqure 13 shows the two ov»posing orientations
1 2

of the dinole, just to show that they are also completely screened out

Figure 14 is the same calculation but with « =4.Again here, the
2

ootential droo is given by (3.5).This is a consecuence of the

verfect screening theorems.
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FIGURE CAPTIONS

Fiqure 1 System geometry.

Figure 2 Mobile charge density profile ﬁ;o(x) Curve 1,
2 2

4,x=38;5,X=1o
2 2

Q;=l;2,cz=2:3, o =4

figure 3 Total charge profile ’Trp(x)-o(x) .Same numeraticn of curves as

Figure 2.80 gap in this case;f=0
Figure 4 same as Figure 3 but with &=1..
Figqure 5 same as Figure 4 but with &=-1.

Figure 6 Variation of total density orofile with charge for oc=2:Curves
: 2

1,2,3,4,5 correspond to surface charge densities ¢=-4,-2,0,2,4

Fijure 7 same as Figure o but with a=1¢6
2

Figure o Contact density as a function of the surface charge

Curve 2,ax=4;3,x=1%
2 2

Figure 9 Total charge density pnrofile for a gao model with @=1

dere bcth plates are equally charged Curve 1,0 =& =2;Curve Z no charge
1 2

Curve 3,0%-2.

~Figure 19U 3ame as figure 9, but with O =-0 =+2,¢=4.Case with dipole
1 2 2

and 22ack3round gan.
Finsure 11 Pctential 7»rofiles for the sane cases 28 in ~Tigure 9.

fijure 12 3ame as figure ll, but witn @« =4.
2

fiqur2 13 Interface with dioecla,nc backaercunZ 33».Potential for

sare ~case as Figure lu with o =1.
A

. IJ



Figure 14 Same as Figure 13,but with background gap «=4.Corresponds
2

to the charge density of Figure 10.
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